
Calculus with Parametric equations

Let C be a parametric curve described by the parametric equations
x = f (t), y = g(t). If the function f and g are differentiable and y is also a
differentiable function of x , the three derivatives dy

dx
, dy

dt
and dx

dt
are related by

the Chain rule:
dy

dt
=

dy

dx

dx

dt
using this we can obtain the formula to compute dy

dx
from dx

dt
and dy

dt
:

dy

dx
=

dy
dt
dx
dt

if
dx

dt
6= 0

I The value of dy
dx

gives gives the slope of a tangent to the curve at any
given point. This sometimes helps us to draw the graph of the curve.

I The curve has a horizontal tangent when dy
dx

= 0, and has a vertical

tangent when dy
dx

=∞.

I The second derivative d2y
dx2 can also be obtained from dy

dx
and dx

dt
. Indeed,

d2y

dx2
=

d

dx
(
dy

dx
) =

d
dt

( dy
dx

)
dx
dt

if
dx

dt
6= 0
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Example 1

Example 1 (a) Find an equation of the tangent to the curve
x = t2 − 2t y = t3 − 3t when t = −2

I When t = −2, the corresponding point on the curve is
P = (4 + 4,−8 + 6) = (8,−2).

I We have dx
dt

= 2t − 2 and dy
dt

= 3t2 − 3.

I Therefore dy
dx

= dy/dt
dx/dt

= 3t2−3
2t−2

when 2t − 2 6= 0.

I When t = −2, dy
dx

= 12−3
−4−2

= 9
−6

= − 3
2
.

I The equation of the tangent line at the point P is (y + 2) = − 3
2
(x − 8).

P

5 10 15
x

-5

5

y
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Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is
horizontal x = t2 − 2t y = t3 − 3t

II From above, we have that dy
dx

= 3t2−3
2t−2

.

I dy
dx

= 0 if 3t2−3
2t−2

= 0 if 3t2 − 3 = 0 (and 2t − 2 6= 0).

I Now 3t2 − 3 = 0 if t = ±1.

I When t = −1, 2t − 2 6= 0 and therefore the graph has a horizontal
tangent. The corresponding point on the curve is Q = (3, 2).

I When t = 1, we have dx
dt

= 2t − 2 = 0 and there is not a well defined
tangent. If the curve describes the motion of a particle, this is a point
where the particle has stooped. In this case, we see that the corresponding
point on the curve is R = (−1,−2) and the curve has a cusp(sharp point).

Q

R

5 10 15
x

-5

5

y
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Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent?
x = t2 − 2t y = t3 − 3t

II From above, we have that dy
dx

= 3t2−3
2t−2

.

I The curve has a vertical tangent if 2t − 2 = 0 (and 3t2 − 3 6= 0).

I dx/dt = 2t − 2 = 0 if t = 1, however in this case dy/dt = 3t2 − 3 = 0,
hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and
concave down.

I d2y
dx2 =

d
`

dy
dx

´
dx

=
d
dt

( dy
dx

)
dx
dt

if dx
dt
6= 0

I If dx
dt
6= 0, we have dy

dx
= 3t2−3

2t−2
= 3

2
(t + 1).

I Therefore d2y
dx2 =

d
dt

( 3
2
(t+1))

2t−2
= 3

4(t−1)

I We see that d2y
dx2 > 0 if t > 1 and d2y

dx2 < 0 if t < 1.

I Therefore the graph is concave down if t < 1 and concave up if t > 1.
(when t = 1, the point on the curve is at the cusp).
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I The curve has a vertical tangent if 2t − 2 = 0 (and 3t2 − 3 6= 0).

I dx/dt = 2t − 2 = 0 if t = 1, however in this case dy/dt = 3t2 − 3 = 0,
hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and
concave down.

I d2y
dx2 =

d
`

dy
dx

´
dx

=
d
dt

( dy
dx

)
dx
dt

if dx
dt
6= 0

I If dx
dt
6= 0, we have dy

dx
= 3t2−3

2t−2
= 3

2
(t + 1).

I Therefore d2y
dx2 =

d
dt

( 3
2
(t+1))

2t−2
= 3

4(t−1)

I We see that d2y
dx2 > 0 if t > 1 and d2y

dx2 < 0 if t < 1.

I Therefore the graph is concave down if t < 1 and concave up if t > 1.
(when t = 1, the point on the curve is at the cusp).
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Example 2

Consider the curve C defined by the parametric equations

x = t cos t y = t sin t − π ≤ t ≤ π
Find the equations of both tangents to C at (0, π

2
)

I We first find the value(s) of t which correspond to this point. At this
point, t cos t = 0, therefore, either t = 0 or cos t = 0and t = ±π

2
. When

t = 0, the corresponding point on the curve is (0, 0) and when t = ±π
2

,
the corresponding point is (0, π

2
).

I We have dy
dt

= sin t + t cos t and dx
dt

= cos t − t sin t.

I Therefore dy
dx

= dy/dt
dx/dt

= sin t−t cos t
cos t+t sin t

.

I When t = π
2

, dy
dx

= 1−0
0−π

2
= −2

π

I When t = −π
2

, dy
dx

= −1−0
0−(−π

2
)(−1)

= 2
π

I The equations of the tangents are given by y − π
2

= −2
π

x and y − π
2

= 2
π
x .
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Area under a curve

Recall that the area under the curve y = F (x) where a ≤ x ≤ b and F (x) > 0
is given by Z b

a

F (x)dx

If this curve (of form y = F (x),F (x) > 0, a ≤ x ≤ b) can be traced out
once by parametric equations x = f (t) and y = g(t), α ≤ t ≤ β then we can
calculate the area under the curve by computing the integral:

˛̨̨ Z β

α

g(t)f ′(t)dt
˛̨̨

=

Z β

α

g(t)f ′(t)dt or

Z α

β

g(t)f ′(t)dt
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Area under a curve

Example Find the area under the curve

x = 2 cos t y = 3 sin t 0 ≤ t ≤ π

2

I The graph of this curve is a quarter ellipse, starting at (2, 0) and moving
counterclockwise to the point (0, 3).

I From the formula, we get that the area under the curve is˛̨̨ R β
α

g(t)f ′(t)dt
˛̨̨
.

I
R β
α

g(t)f ′(t)dt =
R π/2

0
3 sin t(2(− sin t))dt

= −6
R π/2

0
sin2 tdt = −6 1

2

R π
2

0 (1− cos(2t))dt

= −3[t − sin(2t)
2

]
π
2
0 = −3[π

2
− sinπ

2
− 0 + sin 0

2
] = −3[π

2
− 0] = −3π

2
= − 3π

2
.

I Therefore the area under the curve is 3π
2

.
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Arc Length: Length of a curve

If a curve C is given by parametric equations x = f (t), y = g(t), α ≤ t ≤ β,
where the derivatives of f and g are continuous in the interval α ≤ t ≤ β and
C is traversed exactly once as t increases from α to β, then we can compute
the length of the curve with the following integral:

L =

Z β

α

r“dx

dt

”2

+
“dy

dt

”2

dt =

Z β

α

q`
x ′(t)

´2
+
`
y ′(t)

´2
dt

I If the curve is of the form y = F (x), a ≤ x ≤ b, this formula can be
derived from our previous formula

L =

Z b

a

r
1 +

“dy

dx

”2

dx

using the reverse substitution, x = f (t), giving dx
dt

= f ′(t).
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Example

Example Find the arc length of the spiral defined by

x = et cos t y = et sin t 0 ≤ t ≤ 2π

I x ′(t) = et cos t − et sin t, y ′(t) = et sin t + et cos t.

I L =
R 2π

0

p
e2t(cos t − sin t)2 + e2t(sin t + cos t)2dt

I =
R 2π

0
et
p

cos2 t − 2 cos t sin t + sin2 t + sin2 t + 2 sin t cos t + cos2 tdt

I =
R 2π

0
et
√

2dt =
√

2et
˛̨̨2π
0

=
√

2(e2π − 1).
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Example

Example Find the arc length of the circle defined by

x = cos 2t y = sin 2t 0 ≤ t ≤ 2π

Do you see any problems?

I If we apply the formula L =
R β
α

q
( dx

dt
)2 + ( dy

dt
)2dt, then, we get

I L =
R 2π

0

p
4 sin2 2t + 4 cos2 2tdt

I = 2
R 2π

0

√
1dt = 4π

I The problem is that this parametric curve traces out the circle twice, so
we get twice the circumference of the circle as our answer.
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