Let C be a parametric curve described by the parametric equations x = f(t), y = g(t). If the function f and g are differentiable and y is also a differentiable function of x, the three derivatives $\frac{dy}{dx}$, $\frac{dy}{dt}$ and $\frac{dx}{dt}$ are related by the Chain rule:

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$

using this we can obtain the formula to compute $\frac{dy}{dx}$ from $\frac{dx}{dt}$ and $\frac{dy}{dt}$:

$$\boxed{\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}} \quad \text{if} \quad \frac{dx}{dt} \neq 0$$

Let C be a parametric curve described by the parametric equations x = f(t), y = g(t). If the function f and g are differentiable and y is also a differentiable function of x, the three derivatives $\frac{dy}{dx}$, $\frac{dy}{dt}$ and $\frac{dx}{dt}$ are related by the Chain rule:

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$

using this we can obtain the formula to compute $\frac{dy}{dx}$ from $\frac{dx}{dt}$ and $\frac{dy}{dt}$:

$$\boxed{\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}} \quad \text{if} \quad \frac{dx}{dt} \neq 0$$

The value of dy/dx gives gives the slope of a tangent to the curve at any given point. This sometimes helps us to draw the graph of the curve.

Let C be a parametric curve described by the parametric equations x = f(t), y = g(t). If the function f and g are differentiable and y is also a differentiable function of x, the three derivatives $\frac{dy}{dx}$, $\frac{dy}{dt}$ and $\frac{dx}{dt}$ are related by the Chain rule:

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$

using this we can obtain the formula to compute $\frac{dy}{dx}$ from $\frac{dx}{dt}$ and $\frac{dy}{dt}$:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \quad \text{if} \quad \frac{dx}{dt} \neq 0$$

The value of dy/dx gives gives the slope of a tangent to the curve at any given point. This sometimes helps us to draw the graph of the curve.

► The curve has a horizontal tangent when ^{dy}/_{dx} = 0, and has a vertical tangent when ^{dy}/_{dx} = ∞.

Let C be a parametric curve described by the parametric equations x = f(t), y = g(t). If the function f and g are differentiable and y is also a differentiable function of x, the three derivatives $\frac{dy}{dx}$, $\frac{dy}{dt}$ and $\frac{dx}{dt}$ are related by the Chain rule:

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$

using this we can obtain the formula to compute $\frac{dy}{dx}$ from $\frac{dx}{dt}$ and $\frac{dy}{dt}$:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \quad \text{if} \quad \frac{dx}{dt} \neq 0$$

- The value of dy/dx gives gives the slope of a tangent to the curve at any given point. This sometimes helps us to draw the graph of the curve.
- ► The curve has a horizontal tangent when ^{dy}/_{dx} = 0, and has a vertical tangent when ^{dy}/_{dx} = ∞.
- The second derivative $\frac{d^2y}{dx^2}$ can also be obtained from $\frac{dy}{dx}$ and $\frac{dx}{dt}$. Indeed,

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} \quad \text{if} \quad \frac{dx}{dt} \neq 0$$

Example 1 (a) Find an equation of the tangent to the curve $x = t^2 - 2t$ $y = t^3 - 3t$ when t = -2

き▶ ▲ き▶ き の � (♡

Example 1 (a) Find an equation of the tangent to the curve $x = t^2 - 2t$ $y = t^3 - 3t$ when t = -2

When t = -2, the corresponding point on the curve is P = (4 + 4, -8 + 6) = (8, -2).

★ Ξ > Ξ

Example 1 (a) Find an equation of the tangent to the curve $x = t^2 - 2t$ $y = t^3 - 3t$ when t = -2

When t = -2, the corresponding point on the curve is P = (4 + 4, -8 + 6) = (8, -2).

• We have
$$\frac{dx}{dt} = 2t - 2$$
 and $\frac{dy}{dt} = 3t^2 - 3$.

★ Ξ > Ξ

Example 1 (a) Find an equation of the tangent to the curve $x = t^2 - 2t$ $y = t^3 - 3t$ when t = -2When t = -2, the corresponding point on the curve is P = (4 + 4, -8 + 6) = (8, -2).

• We have
$$\frac{dx}{dt} = 2t - 2$$
 and $\frac{dy}{dt} = 3t^2 - 3$.

• Therefore
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2-3}{2t-2}$$
 when $2t - 2 \neq 0$.

Example 1 (a) Find an equation of the tangent to the curve $x = t^2 - 2t$ $y = t^3 - 3t$ when t = -2When t = -2, the corresponding point on the curve is P = (4 + 4, -8 + 6) = (8, -2).We have $\frac{dx}{dt} = 2t - 2$ and $\frac{dy}{dt} = 3t^2 - 3.$ Therefore $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2 - 3}{2t - 2}$ when $2t - 2 \neq 0.$ When t = -2, $\frac{dy}{dx} = \frac{12 - 3}{-4 - 2} = \frac{9}{-6} = -\frac{3}{2}.$

▲ 프 ▶ 프

Example 1 (a) Find an equation of the tangent to the curve $x = t^2 - 2t$ $y = t^3 - 3t$ when t = -2When t = -2, the corresponding point on the curve is P = (4 + 4, -8 + 6) = (8, -2).We have $\frac{dx}{dt} = 2t - 2$ and $\frac{dy}{dt} = 3t^2 - 3.$ Therefore $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2 - 3}{2t - 2}$ when $2t - 2 \neq 0.$ When t = -2, $\frac{dy}{dx} = \frac{12 - 3}{-4 - 2} = \frac{9}{-6} = -\frac{3}{2}.$

• The equation of the tangent line at the point P is $(y + 2) = -\frac{3}{2}(x - 8)$.

(《 문 》 문

Example 1 (a) Find an equation of the tangent to the curve $x = t^2 - 2t$ $y = t^3 - 3t$ when t = -2When t = -2, the corresponding point on the curve is P = (4 + 4, -8 + 6) = (8, -2).We have $\frac{dx}{dt} = 2t - 2$ and $\frac{dy}{dt} = 3t^2 - 3.$ Therefore $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2 - 3}{2t - 2}$ when $2t - 2 \neq 0.$ When t = -2, $\frac{dy}{dx} = \frac{12 - 3}{-4 - 2} = \frac{9}{-6} = -\frac{3}{2}.$

• The equation of the tangent line at the point P is $(y+2) = -\frac{3}{2}(x-8)$.

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $x = t^2 - 2t$ $y = t^3 - 3t$

▲ 臣 ▶ 臣 • • • • •

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

•
$$\frac{dy}{dx} = 0$$
 if $\frac{3t^2-3}{2t-2} = 0$ if $3t^2 - 3 = 0$ (and $2t - 2 \neq 0$).

- 本臣 ト 三臣

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

•
$$\frac{dy}{dx} = 0$$
 if $\frac{3t^2-3}{2t-2} = 0$ if $3t^2 - 3 = 0$ (and $2t - 2 \neq 0$).

Now
$$3t^2 - 3 = 0$$
 if $t = \pm 1$.

- 本臣 ト 三臣

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

•
$$\frac{dy}{dx} = 0$$
 if $\frac{3t^2-3}{2t-2} = 0$ if $3t^2 - 3 = 0$ (and $2t - 2 \neq 0$).

Now
$$3t^2 - 3 = 0$$
 if $t = \pm 1$.

▶ When t = -1, $2t - 2 \neq 0$ and therefore the graph has a horizontal tangent. The corresponding point on the curve is Q = (3, 2).

★ 프 ► = 프

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

•
$$\frac{dy}{dx} = 0$$
 if $\frac{3t^2-3}{2t-2} = 0$ if $3t^2 - 3 = 0$ (and $2t - 2 \neq 0$).

Now
$$3t^2 - 3 = 0$$
 if $t = \pm 1$.

- ▶ When t = -1, $2t 2 \neq 0$ and therefore the graph has a horizontal tangent. The corresponding point on the curve is Q = (3, 2).
- ▶ When t = 1, we have $\frac{dx}{dt} = 2t 2 = 0$ and there is not a well defined tangent. If the curve describes the motion of a particle, this is a point where the particle has stooped. In this case, we see that the corresponding point on the curve is R = (-1, -2) and the curve has a cusp(sharp point).

물 에 에 물 에 드릴

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

•
$$\frac{dy}{dx} = 0$$
 if $\frac{3t^2-3}{2t-2} = 0$ if $3t^2 - 3 = 0$ (and $2t - 2 \neq 0$).

Now
$$3t^2 - 3 = 0$$
 if $t = \pm 1$.

- ▶ When t = -1, $2t 2 \neq 0$ and therefore the graph has a horizontal tangent. The corresponding point on the curve is Q = (3, 2).
- ▶ When t = 1, we have $\frac{dx}{dt} = 2t 2 = 0$ and there is not a well defined tangent. If the curve describes the motion of a particle, this is a point where the particle has stooped. In this case, we see that the corresponding point on the curve is R = (-1, -2) and the curve has a cusp(sharp point).

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x = t^2 - 2t$ $y = t^3 - 3t$

(d) Use the second derivative to determine where the graph is concave up and concave down.

★ 프 ▶ - 프

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

(d) Use the second derivative to determine where the graph is concave up and concave down.

< 注 ▶ 注 注

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x = t^2 - 2t$ $y = t^3 - 3t$

- From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.
- The curve has a vertical tangent if 2t 2 = 0 (and $3t^2 3 \neq 0$).

(d) Use the second derivative to determine where the graph is concave up and concave down.

★ 注 → 注 注

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

- The curve has a vertical tangent if 2t 2 = 0 (and $3t^2 3 \neq 0$).
- ► dx/dt = 2t 2 = 0 if t = 1, however in this case $dy/dt = 3t^2 3 = 0$, hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and concave down.

< 三→

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

- The curve has a vertical tangent if 2t 2 = 0 (and $3t^2 3 \neq 0$).
- ► dx/dt = 2t 2 = 0 if t = 1, however in this case $dy/dt = 3t^2 3 = 0$, hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and concave down.

- ▲ 글 ▶ - 글

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

- The curve has a vertical tangent if 2t 2 = 0 (and $3t^2 3 \neq 0$).
- ► dx/dt = 2t 2 = 0 if t = 1, however in this case $dy/dt = 3t^2 3 = 0$, hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and concave down.

•
$$\frac{d^2y}{dx^2} = \frac{d\left(\frac{dy}{dx}\right)}{dx} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$
 if $\frac{dx}{dt} \neq 0$
• If $\frac{dx}{dt} \neq 0$, we have $\frac{dy}{dx} = \frac{3t^2 - 3}{2t - 2} = \frac{3}{2}(t + 1)$.

- ▲ 글 ▶ - 글

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

- The curve has a vertical tangent if 2t 2 = 0 (and $3t^2 3 \neq 0$).
- ► dx/dt = 2t 2 = 0 if t = 1, however in this case $dy/dt = 3t^2 3 = 0$, hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and concave down.

•
$$\frac{d^2 y}{dx^2} = \frac{d\left(\frac{dy}{dx}\right)}{dx} = \frac{d}{dt}\left(\frac{dy}{dt}\right)$$
 if $\frac{dx}{dt} \neq 0$
• If $\frac{dx}{dt} \neq 0$, we have $\frac{dy}{dx} = \frac{3t^2 - 3}{2t - 2} = \frac{3}{2}(t + 1)$
• Therefore $\frac{d^2 y}{dx^2} = \frac{d}{dt}\left(\frac{3}{2}(t+1)\right) = \frac{3}{4(t-1)}$

물 에 에 물 에 드릴

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

- The curve has a vertical tangent if 2t 2 = 0 (and $3t^2 3 \neq 0$).
- ► dx/dt = 2t 2 = 0 if t = 1, however in this case dy/dt = 3t² 3 = 0, hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and concave down.

< ∃ > ____

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x = t^2 - 2t$ $y = t^3 - 3t$

From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.

- The curve has a vertical tangent if 2t 2 = 0 (and $3t^2 3 \neq 0$).
- ► dx/dt = 2t 2 = 0 if t = 1, however in this case dy/dt = 3t² 3 = 0, hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and concave down.

•
$$\frac{d^2y}{dx^2} = \frac{d\left(\frac{dy}{dx}\right)}{dx} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$
 if $\frac{dx}{dt} \neq 0$

• If
$$\frac{dx}{dt} \neq 0$$
, we have $\frac{dy}{dx} = \frac{3t^2 - 3}{2t - 2} = \frac{3}{2}(t + 1)$.

• Therefore
$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{3}{2}(t+1))}{2t-2} = \frac{3}{4(t-1)}$$

• We see that $\frac{d^2y}{dx^2} > 0$ if t > 1 and $\frac{d^2y}{dx^2} < 0$ if t < 1.

Therefore the graph is concave down if t < 1 and concave up if t > 1. (when t = 1, the point on the curve is at the cusp).

Consider the curve ${\mathcal C}$ defined by the parametric equations

$$x = t \cos t$$
 $y = t \sin t$ $-\pi \le t \le \pi$

Find the equations of both tangents to C at $(0, \frac{\pi}{2})$

< ∃ →

э

Consider the curve ${\mathcal C}$ defined by the parametric equations

$$x = t \cos t$$
 $y = t \sin t$ $-\pi \le t \le \pi$

Find the equations of both tangents to C at $(0, \frac{\pi}{2})$

▶ We first find the value(s) of t which correspond to this point. At this point, $t \cos t = 0$, therefore, either t = 0 or $\cos t = 0$ and $t = \pm \frac{\pi}{2}$. When t = 0, the corresponding point on the curve is (0,0) and when $t = \pm \frac{\pi}{2}$, the corresponding point is $(0, \frac{\pi}{2})$.

4 E b

Consider the curve ${\mathcal C}$ defined by the parametric equations

$$x = t \cos t$$
 $y = t \sin t$ $-\pi \le t \le \pi$

Find the equations of both tangents to C at $(0, \frac{\pi}{2})$

▶ We first find the value(s) of t which correspond to this point. At this point, t cos t = 0, therefore, either t = 0 or cos t = 0 and t = $\pm \frac{\pi}{2}$. When t = 0, the corresponding point on the curve is (0,0) and when t = $\pm \frac{\pi}{2}$, the corresponding point is $(0, \frac{\pi}{2})$.

• We have
$$\frac{dy}{dt} = \sin t + t \cos t$$
 and $\frac{dx}{dt} = \cos t - t \sin t$.

4 E b

Consider the curve ${\mathcal C}$ defined by the parametric equations

$$x = t \cos t$$
 $y = t \sin t$ $-\pi \le t \le \pi$

Find the equations of both tangents to C at $(0, \frac{\pi}{2})$

▶ We first find the value(s) of t which correspond to this point. At this point, $t \cos t = 0$, therefore, either t = 0 or $\cos t = 0$ and $t = \pm \frac{\pi}{2}$. When t = 0, the corresponding point on the curve is (0,0) and when $t = \pm \frac{\pi}{2}$, the corresponding point is $(0, \frac{\pi}{2})$.

• We have
$$\frac{dy}{dt} = \sin t + t \cos t$$
 and $\frac{dx}{dt} = \cos t - t \sin t$.

• Therefore
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\sin t - t \cos t}{\cos t + t \sin t}$$
.

4 E b

Consider the curve $\mathcal C$ defined by the parametric equations

$$x = t \cos t$$
 $y = t \sin t$ $-\pi \le t \le \pi$

Find the equations of both tangents to C at $(0, \frac{\pi}{2})$

▶ We first find the value(s) of t which correspond to this point. At this point, $t \cos t = 0$, therefore, either t = 0 or $\cos t = 0$ and $t = \pm \frac{\pi}{2}$. When t = 0, the corresponding point on the curve is (0,0) and when $t = \pm \frac{\pi}{2}$, the corresponding point is $(0, \frac{\pi}{2})$.

• We have
$$\frac{dy}{dt} = \sin t + t \cos t$$
 and $\frac{dx}{dt} = \cos t - t \sin t$.

• Therefore
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\sin t - t \cos t}{\cos t + t \sin t}$$
.

• When
$$t = \frac{\pi}{2}$$
, $\frac{dy}{dx} = \frac{1-0}{0-\frac{\pi}{2}} = \frac{-2}{\pi}$

문에 비원에 다

3

Consider the curve \mathcal{C} defined by the parametric equations

$$x = t \cos t$$
 $y = t \sin t$ $-\pi \le t \le \pi$

Find the equations of both tangents to C at $(0, \frac{\pi}{2})$

▶ We first find the value(s) of t which correspond to this point. At this point, t cos t = 0, therefore, either t = 0 or cos t = 0 and t = $\pm \frac{\pi}{2}$. When t = 0, the corresponding point on the curve is (0,0) and when t = $\pm \frac{\pi}{2}$, the corresponding point is $(0, \frac{\pi}{2})$.

• We have
$$\frac{dy}{dt} = \sin t + t \cos t$$
 and $\frac{dx}{dt} = \cos t - t \sin t$.

• Therefore
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\sin t - t \cos t}{\cos t + t \sin t}$$
.

- When $t = \frac{\pi}{2}$, $\frac{dy}{dx} = \frac{1-0}{0-\frac{\pi}{2}} = \frac{-2}{\pi}$
- When $t = \frac{-\pi}{2}$, $\frac{dy}{dx} = \frac{-1-0}{0-(-\frac{\pi}{2})(-1)} = \frac{2}{\pi}$

< ∃ > ____

Consider the curve ${\mathcal C}$ defined by the parametric equations

$$x = t \cos t$$
 $y = t \sin t$ $-\pi \le t \le \pi$

Find the equations of both tangents to C at $(0, \frac{\pi}{2})$

▶ We first find the value(s) of t which correspond to this point. At this point, $t \cos t = 0$, therefore, either t = 0 or $\cos t = 0$ and $t = \pm \frac{\pi}{2}$. When t = 0, the corresponding point on the curve is (0,0) and when $t = \pm \frac{\pi}{2}$, the corresponding point is $(0, \frac{\pi}{2})$.

• We have
$$\frac{dy}{dt} = \sin t + t \cos t$$
 and $\frac{dx}{dt} = \cos t - t \sin t$.

• Therefore
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\sin t - t \cos t}{\cos t + t \sin t}$$
.

- When $t = \frac{\pi}{2}$, $\frac{dy}{dx} = \frac{1-0}{0-\frac{\pi}{2}} = \frac{-2}{\pi}$
- When $t = \frac{-\pi}{2}$, $\frac{dy}{dx} = \frac{-1-0}{0-(-\frac{\pi}{2})(-1)} = \frac{2}{\pi}$
- The equations of the tangents are given by $y \frac{\pi}{2} = \frac{-2}{\pi}x$ and $y \frac{\pi}{2} = \frac{2}{\pi}x$.

Recall that the area under the curve y = F(x) where $a \le x \le b$ and F(x) > 0 is given by

$$\int_{a}^{b} F(x) dx$$

If this curve (of form y = F(x), F(x) > 0, $a \le x \le b$) can be traced out once by parametric equations x = f(t) and $y = g(t), \alpha \le t \le \beta$ then we can calculate the area under the curve by computing the integral:

$$\left|\int_{\alpha}^{\beta}g(t)f'(t)dt\right| = \int_{\alpha}^{\beta}g(t)f'(t)dt$$
 or $\int_{\beta}^{\alpha}g(t)f'(t)dt$

Example Find the area under the curve

$$x = 2\cos t$$
 $y = 3\sin t$ $0 \le t \le \frac{\pi}{2}$

(문) 문

Example Find the area under the curve

$$x = 2\cos t$$
 $y = 3\sin t$ $0 \le t \le \frac{\pi}{2}$

▶ The graph of this curve is a quarter ellipse, starting at (2,0) and moving counterclockwise to the point (0,3).

글 > 글

Example Find the area under the curve

$$x = 2\cos t$$
 $y = 3\sin t$ $0 \le t \le \frac{\pi}{2}$

- ▶ The graph of this curve is a quarter ellipse, starting at (2,0) and moving counterclockwise to the point (0,3).
- From the formula, we get that the area under the curve is $\left|\int_{\alpha}^{\beta} g(t)f'(t)dt\right|$.

∢ ≣ ≯

э

Example Find the area under the curve

$$x = 2\cos t$$
 $y = 3\sin t$ $0 \le t \le \frac{\pi}{2}$

- ▶ The graph of this curve is a quarter ellipse, starting at (2,0) and moving counterclockwise to the point (0,3).
- From the formula, we get that the area under the curve is $\left|\int_{\alpha}^{\beta} g(t)f'(t)dt\right|$.

$$\int_{\alpha}^{\beta} g(t)f'(t)dt = \int_{0}^{\pi/2} 3\sin t(2(-\sin t))dt = -6\int_{0}^{\pi/2} \sin^{2} tdt = -6\frac{1}{2}\int_{0}^{\frac{\pi}{2}} (1-\cos(2t))dt = -3[t-\frac{\sin(2t)}{2}]_{0}^{\frac{\pi}{2}} = -3[\frac{\pi}{2}-\frac{\sin\pi}{2}-0+\frac{\sin0}{2}] = -3[\frac{\pi}{2}-0] = \frac{-3\pi}{2} = -\frac{3\pi}{2}$$

< ∃ >

э

Example Find the area under the curve

$$x = 2\cos t$$
 $y = 3\sin t$ $0 \le t \le \frac{\pi}{2}$

▶ The graph of this curve is a quarter ellipse, starting at (2,0) and moving counterclockwise to the point (0,3).

From the formula, we get that the area under the curve is
$$\left|\int_{\alpha}^{\beta} g(t)f'(t)dt\right|$$
.

$$\int_{\alpha}^{\beta} g(t)f'(t)dt = \int_{0}^{\pi/2} 3\sin t(2(-\sin t))dt = -6\int_{0}^{\pi/2} \sin^{2} tdt = -6\frac{1}{2}\int_{0}^{\frac{\pi}{2}} (1-\cos(2t))dt = -3[t-\frac{\sin(2t)}{2}]_{0}^{\frac{\pi}{2}} = -3[\frac{\pi}{2}-\frac{\sin\pi}{2}-0+\frac{\sin0}{2}] = -3[\frac{\pi}{2}-0] = \frac{-3\pi}{2} = -\frac{3\pi}{2}.$$

• Therefore the area under the curve is $\frac{3\pi}{2}$.

If a curve C is given by parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where the derivatives of f and g are continuous in the interval $\alpha \le t \le \beta$ and C is traversed exactly once as t increases from α to β , then we can compute the length of the curve with the following integral:

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_{\alpha}^{\beta} \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2} dt$$

If a curve C is given by parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where the derivatives of f and g are continuous in the interval $\alpha \le t \le \beta$ and C is traversed exactly once as t increases from α to β , then we can compute the length of the curve with the following integral:

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_{\alpha}^{\beta} \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2} dt$$

If the curve is of the form y = F(x), a ≤ x ≤ b, this formula can be derived from our previous formula

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

using the reverse substitution, x = f(t), giving $\frac{dx}{dt} = f'(t)$.

Example Find the arc length of the spiral defined by

$$x = e^{t} \cos t \qquad y = e^{t} \sin t \qquad 0 \le t \le 2\pi$$

- ● 臣 ▶ ----

$$x = e^t \cos t$$
 $y = e^t \sin t$ $0 \le t \le 2\pi$

• $x'(t) = e^t \cos t - e^t \sin t$, $y'(t) = e^t \sin t + e^t \cos t$.

$$x = e^t \cos t$$
 $y = e^t \sin t$ $0 \le t \le 2\pi$

•
$$x'(t) = e^t \cos t - e^t \sin t$$
, $y'(t) = e^t \sin t + e^t \cos t$.
• $L = \int_0^{2\pi} \sqrt{e^{2t} (\cos t - \sin t)^2 + e^{2t} (\sin t + \cos t)^2} dt$

∢ 臣 ▶

æ

$$x = e^t \cos t$$
 $y = e^t \sin t$ $0 \le t \le 2\pi$

∢ 臣 ▶

æ

$$x = e^t \cos t$$
 $y = e^t \sin t$ $0 \le t \le 2\pi$

$$\begin{aligned} & \star'(t) = e^t \cos t - e^t \sin t, \quad y'(t) = e^t \sin t + e^t \cos t. \\ & \star L = \int_0^{2\pi} \sqrt{e^{2t} (\cos t - \sin t)^2 + e^{2t} (\sin t + \cos t)^2 dt} \\ & \star = \int_0^{2\pi} e^t \sqrt{\cos^2 t - 2 \cos t \sin t + \sin^2 t + \sin^2 t + 2 \sin t \cos t + \cos^2 t} dt \\ & \star = \int_0^{2\pi} e^t \sqrt{2} dt = \sqrt{2} e^t \Big|_0^{2\pi} = \sqrt{2} (e^{2\pi} - 1). \end{aligned}$$

∢ 臣 ▶

æ

$$x = \cos 2t$$
 $y = \sin 2t$ $0 \le t \le 2\pi$

Do you see any problems?

₹ Ξ → Ξ

$$x = \cos 2t$$
 $y = \sin 2t$ $0 \le t \le 2\pi$

Do you see any problems?

• If we apply the formula
$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
, then, we get

₹ Ξ → Ξ

$$x = \cos 2t$$
 $y = \sin 2t$ $0 \le t \le 2\pi$

Do you see any problems?

• If we apply the formula $L = \int_{\alpha}^{\beta} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$, then, we get

•
$$L = \int_0^{2\pi} \sqrt{4\sin^2 2t + 4\cos^2 2t} dt$$

< 注→ 注

$$x = \cos 2t$$
 $y = \sin 2t$ $0 \le t \le 2\pi$

Do you see any problems?

• If we apply the formula $L = \int_{\alpha}^{\beta} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$, then, we get

•
$$L = \int_0^{2\pi} \sqrt{4 \sin^2 2t + 4 \cos^2 2t} dt$$

• $= 2 \int_0^{2\pi} \sqrt{1} dt = 4\pi$

< 注→ 注

$$x = \cos 2t$$
 $y = \sin 2t$ $0 \le t \le 2\pi$

Do you see any problems?

• If we apply the formula $L = \int_{\alpha}^{\beta} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$, then, we get

•
$$L = \int_0^{2\pi} \sqrt{4\sin^2 2t + 4\cos^2 2t} dt$$

- $\blacktriangleright = 2 \int_0^{2\pi} \sqrt{1} dt = 4\pi$
- The problem is that this parametric curve traces out the circle twice, so we get twice the circumference of the circle as our answer.