Calculus with Parametric equations

Let \mathcal{C} be a parametric curve described by the parametric equations $x=f(t), y=g(t)$. If the function f and g are differentiable and y is also a differentiable function of x, the three derivatives $\frac{d y}{d x}, \frac{d y}{d t}$ and $\frac{d x}{d t}$ are related by the Chain rule:

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

using this we can obtain the formula to compute $\frac{d y}{d x}$ from $\frac{d x}{d t}$ and $\frac{d y}{d t}$:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad \text { if } \quad \frac{d x}{d t} \neq 0
$$

Calculus with Parametric equations

Let \mathcal{C} be a parametric curve described by the parametric equations $x=f(t), y=g(t)$. If the function f and g are differentiable and y is also a differentiable function of x, the three derivatives $\frac{d y}{d x}, \frac{d y}{d t}$ and $\frac{d x}{d t}$ are related by the Chain rule:

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

using this we can obtain the formula to compute $\frac{d y}{d x}$ from $\frac{d x}{d t}$ and $\frac{d y}{d t}$:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad \text { if } \quad \frac{d x}{d t} \neq 0
$$

- The value of $\frac{d y}{d x}$ gives gives the slope of a tangent to the curve at any given point. This sometimes helps us to draw the graph of the curve.

Calculus with Parametric equations

Let \mathcal{C} be a parametric curve described by the parametric equations $x=f(t), y=g(t)$. If the function f and g are differentiable and y is also a differentiable function of x, the three derivatives $\frac{d y}{d x}, \frac{d y}{d t}$ and $\frac{d x}{d t}$ are related by the Chain rule:

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

using this we can obtain the formula to compute $\frac{d y}{d x}$ from $\frac{d x}{d t}$ and $\frac{d y}{d t}$:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad \text { if } \quad \frac{d x}{d t} \neq 0
$$

- The value of $\frac{d y}{d x}$ gives gives the slope of a tangent to the curve at any given point. This sometimes helps us to draw the graph of the curve.
- The curve has a horizontal tangent when $\frac{d y}{d x}=0$, and has a vertical tangent when $\frac{d y}{d x}=\infty$.

Calculus with Parametric equations

Let \mathcal{C} be a parametric curve described by the parametric equations $x=f(t), y=g(t)$. If the function f and g are differentiable and y is also a differentiable function of x, the three derivatives $\frac{d y}{d x}, \frac{d y}{d t}$ and $\frac{d x}{d t}$ are related by the Chain rule:

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

using this we can obtain the formula to compute $\frac{d y}{d x}$ from $\frac{d x}{d t}$ and $\frac{d y}{d t}$:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad \text { if } \quad \frac{d x}{d t} \neq 0
$$

- The value of $\frac{d y}{d x}$ gives gives the slope of a tangent to the curve at any given point. This sometimes helps us to draw the graph of the curve.
- The curve has a horizontal tangent when $\frac{d y}{d x}=0$, and has a vertical tangent when $\frac{d y}{d x}=\infty$.
- The second derivative $\frac{d^{2} y}{d x^{2}}$ can also be obtained from $\frac{d y}{d x}$ and $\frac{d x}{d t}$. Indeed,

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}} \quad \text { if } \quad \frac{d x}{d t} \neq 0
$$

Example 1

Example 1 (a) Find an equation of the tangent to the curve $x=t^{2}-2 t \quad y=t^{3}-3 t \quad$ when $\quad t=-2$

Example 1

Example 1 (a) Find an equation of the tangent to the curve $x=t^{2}-2 t \quad y=t^{3}-3 t \quad$ when $\quad t=-2$

- When $t=-2$, the corresponding point on the curve is

$$
P=(4+4,-8+6)=(8,-2) .
$$

Example 1

Example 1 (a) Find an equation of the tangent to the curve $x=t^{2}-2 t \quad y=t^{3}-3 t \quad$ when $\quad t=-2$

- When $t=-2$, the corresponding point on the curve is

$$
P=(4+4,-8+6)=(8,-2)
$$

- We have $\frac{d x}{d t}=2 t-2$ and $\frac{d y}{d t}=3 t^{2}-3$.

Example 1

Example 1 (a) Find an equation of the tangent to the curve $x=t^{2}-2 t \quad y=t^{3}-3 t \quad$ when $\quad t=-2$

- When $t=-2$, the corresponding point on the curve is

$$
P=(4+4,-8+6)=(8,-2)
$$

- We have $\frac{d x}{d t}=2 t-2$ and $\frac{d y}{d t}=3 t^{2}-3$.
- Therefore $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3 t^{2}-3}{2 t-2}$ when $2 t-2 \neq 0$.

Example 1

Example 1 (a) Find an equation of the tangent to the curve $x=t^{2}-2 t \quad y=t^{3}-3 t \quad$ when $\quad t=-2$

- When $t=-2$, the corresponding point on the curve is

$$
P=(4+4,-8+6)=(8,-2)
$$

- We have $\frac{d x}{d t}=2 t-2$ and $\frac{d y}{d t}=3 t^{2}-3$.
- Therefore $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3 t^{2}-3}{2 t-2}$ when $2 t-2 \neq 0$.
- When $t=-2, \frac{d y}{d x}=\frac{12-3}{-4-2}=\frac{9}{-6}=-\frac{3}{2}$.

Example 1

Example 1 (a) Find an equation of the tangent to the curve $x=t^{2}-2 t \quad y=t^{3}-3 t \quad$ when $\quad t=-2$

- When $t=-2$, the corresponding point on the curve is

$$
P=(4+4,-8+6)=(8,-2)
$$

- We have $\frac{d x}{d t}=2 t-2$ and $\frac{d y}{d t}=3 t^{2}-3$.
- Therefore $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3 t^{2}-3}{2 t-2}$ when $2 t-2 \neq 0$.
- When $t=-2, \frac{d y}{d x}=\frac{12-3}{-4-2}=\frac{9}{-6}=-\frac{3}{2}$.
- The equation of the tangent line at the point P is $(y+2)=-\frac{3}{2}(x-8)$.

Example 1

Example 1 (a) Find an equation of the tangent to the curve $x=t^{2}-2 t \quad y=t^{3}-3 t \quad$ when $\quad t=-2$

- When $t=-2$, the corresponding point on the curve is

$$
P=(4+4,-8+6)=(8,-2)
$$

- We have $\frac{d x}{d t}=2 t-2$ and $\frac{d y}{d t}=3 t^{2}-3$.
- Therefore $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3 t^{2}-3}{2 t-2}$ when $2 t-2 \neq 0$.
- When $t=-2, \frac{d y}{d x}=\frac{12-3}{-4-2}=\frac{9}{-6}=-\frac{3}{2}$.
- The equation of the tangent line at the point P is $(y+2)=-\frac{3}{2}(x-8)$.

Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $\quad x=t^{2}-2 t \quad y=t^{3}-3 t$

Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $\quad x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.

Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $\quad x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- $\frac{d y}{d x}=0$ if $\frac{3 t^{2}-3}{2 t-2}=0$ if $3 t^{2}-3=0($ and $2 t-2 \neq 0)$.

Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $\quad x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- $\frac{d y}{d x}=0$ if $\frac{3 t^{2}-3}{2 t-2}=0$ if $3 t^{2}-3=0($ and $2 t-2 \neq 0)$.
- Now $3 t^{2}-3=0$ if $t= \pm 1$.

Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $\quad x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- $\frac{d y}{d x}=0$ if $\frac{3 t^{2}-3}{2 t-2}=0$ if $3 t^{2}-3=0($ and $2 t-2 \neq 0)$.
- Now $3 t^{2}-3=0$ if $t= \pm 1$.
- When $t=-1,2 t-2 \neq 0$ and therefore the graph has a horizontal tangent. The corresponding point on the curve is $Q=(3,2)$.

Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $\quad x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- $\frac{d y}{d x}=0$ if $\frac{3 t^{2}-3}{2 t-2}=0$ if $3 t^{2}-3=0($ and $2 t-2 \neq 0)$.
- Now $3 t^{2}-3=0$ if $t= \pm 1$.
- When $t=-1,2 t-2 \neq 0$ and therefore the graph has a horizontal tangent. The corresponding point on the curve is $Q=(3,2)$.
- When $t=1$, we have $\frac{d x}{d t}=2 t-2=0$ and there is not a well defined tangent. If the curve describes the motion of a particle, this is a point where the particle has stooped. In this case, we see that the corresponding point on the curve is $R=(-1,-2)$ and the curve has a cusp(sharp point).

Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $\quad x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- $\frac{d y}{d x}=0$ if $\frac{3 t^{2}-3}{2 t-2}=0$ if $3 t^{2}-3=0($ and $2 t-2 \neq 0)$.
- Now $3 t^{2}-3=0$ if $t= \pm 1$.
- When $t=-1,2 t-2 \neq 0$ and therefore the graph has a horizontal tangent. The corresponding point on the curve is $Q=(3,2)$.
- When $t=1$, we have $\frac{d x}{d t}=2 t-2=0$ and there is not a well defined tangent. If the curve describes the motion of a particle, this is a point where the particle has stooped. In this case, we see that the corresponding point on the curve is $R=(-1,-2)$ and the curve has a cusp(sharp point).

Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x=t^{2}-2 t \quad y=t^{3}-3 t$
(d) Use the second derivative to determine where the graph is concave up and concave down.

Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
(d) Use the second derivative to determine where the graph is concave up and concave down.

Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- The curve has a vertical tangent if $2 t-2=0$ (and $3 t^{2}-3 \neq 0$).
(d) Use the second derivative to determine where the graph is concave up and concave down.

Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- The curve has a vertical tangent if $2 t-2=0$ (and $3 t^{2}-3 \neq 0$).
- $d x / d t=2 t-2=0$ if $t=1$, however in this case $d y / d t=3 t^{2}-3=0$, hence the curve does not have a vertical tangent.
(d) Use the second derivative to determine where the graph is concave up and concave down.

Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- The curve has a vertical tangent if $2 t-2=0$ (and $3 t^{2}-3 \neq 0$).
- $d x / d t=2 t-2=0$ if $t=1$, however in this case $d y / d t=3 t^{2}-3=0$, hence the curve does not have a vertical tangent.
(d) Use the second derivative to determine where the graph is concave up and concave down.
$-\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$ if $\frac{d x}{d t} \neq 0$

Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- The curve has a vertical tangent if $2 t-2=0$ (and $3 t^{2}-3 \neq 0$).
- $d x / d t=2 t-2=0$ if $t=1$, however in this case $d y / d t=3 t^{2}-3=0$, hence the curve does not have a vertical tangent.
(d) Use the second derivative to determine where the graph is concave up and concave down.
$-\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$ if $\frac{d x}{d t} \neq 0$
- If $\frac{d x}{d t} \neq 0$, we have $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}=\frac{3}{2}(t+1)$.

Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- The curve has a vertical tangent if $2 t-2=0$ (and $3 t^{2}-3 \neq 0$).
- $d x / d t=2 t-2=0$ if $t=1$, however in this case $d y / d t=3 t^{2}-3=0$, hence the curve does not have a vertical tangent.
(d) Use the second derivative to determine where the graph is concave up and concave down.
$-\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$ if $\frac{d x}{d t} \neq 0$
- If $\frac{d x}{d t} \neq 0$, we have $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}=\frac{3}{2}(t+1)$.
- Therefore $\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{3}{2}(t+1)\right)}{2 t-2}=\frac{3}{4(t-1)}$

Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- The curve has a vertical tangent if $2 t-2=0$ (and $3 t^{2}-3 \neq 0$).
- $d x / d t=2 t-2=0$ if $t=1$, however in this case $d y / d t=3 t^{2}-3=0$, hence the curve does not have a vertical tangent.
(d) Use the second derivative to determine where the graph is concave up and concave down.
$-\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$ if $\frac{d x}{d t} \neq 0$
- If $\frac{d x}{d t} \neq 0$, we have $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}=\frac{3}{2}(t+1)$.
- Therefore $\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{3}{2}(t+1)\right)}{2 t-2}=\frac{3}{4(t-1)}$
- We see that $\frac{d^{2} y}{d x^{2}}>0$ if $t>1$ and $\frac{d^{2} y}{d x^{2}}<0$ if $t<1$.

Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x=t^{2}-2 t \quad y=t^{3}-3 t$

- From above, we have that $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}$.
- The curve has a vertical tangent if $2 t-2=0\left(\right.$ and $\left.3 t^{2}-3 \neq 0\right)$.
- $d x / d t=2 t-2=0$ if $t=1$, however in this case $d y / d t=3 t^{2}-3=0$, hence the curve does not have a vertical tangent.
(d) Use the second derivative to determine where the graph is concave up and concave down.
$-\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$ if $\frac{d x}{d t} \neq 0$
- If $\frac{d x}{d t} \neq 0$, we have $\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t-2}=\frac{3}{2}(t+1)$.
- Therefore $\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{3}{2}(t+1)\right)}{2 t-2}=\frac{3}{4(t-1)}$
- We see that $\frac{d^{2} y}{d x^{2}}>0$ if $t>1$ and $\frac{d^{2} y}{d x^{2}}<0$ if $t<1$.
- Therefore the graph is concave down if $t<1$ and concave up if $t>1$. (when $t=1$, the point on the curve is at the cusp).

Example 2

Consider the curve \mathcal{C} defined by the parametric equations

$$
x=t \cos t \quad y=t \sin t \quad-\pi \leq t \leq \pi
$$

Find the equations of both tangents to \mathcal{C} at ($0, \frac{\pi}{2}$)

Example 2

Consider the curve \mathcal{C} defined by the parametric equations

$$
x=t \cos t \quad y=t \sin t \quad-\pi \leq t \leq \pi
$$

Find the equations of both tangents to \mathcal{C} at $\left(0, \frac{\pi}{2}\right)$

- We first find the value(s) of t which correspond to this point. At this point, $t \cos t=0$, therefore, either $t=0$ or $\cos t=0$ and $t= \pm \frac{\pi}{2}$. When $t=0$, the corresponding point on the curve is $(0,0)$ and when $t= \pm \frac{\pi}{2}$, the corresponding point is $\left(0, \frac{\pi}{2}\right)$.

Example 2

Consider the curve \mathcal{C} defined by the parametric equations

$$
x=t \cos t \quad y=t \sin t \quad-\pi \leq t \leq \pi
$$

Find the equations of both tangents to \mathcal{C} at $\left(0, \frac{\pi}{2}\right)$

- We first find the value(s) of t which correspond to this point. At this point, $t \cos t=0$, therefore, either $t=0$ or $\cos t=0$ and $t= \pm \frac{\pi}{2}$. When $t=0$, the corresponding point on the curve is $(0,0)$ and when $t= \pm \frac{\pi}{2}$, the corresponding point is $\left(0, \frac{\pi}{2}\right)$.
- We have $\frac{d y}{d t}=\sin t+t \cos t$ and $\frac{d x}{d t}=\cos t-t \sin t$.

Example 2

Consider the curve \mathcal{C} defined by the parametric equations

$$
x=t \cos t \quad y=t \sin t \quad-\pi \leq t \leq \pi
$$

Find the equations of both tangents to \mathcal{C} at $\left(0, \frac{\pi}{2}\right)$

- We first find the value(s) of t which correspond to this point. At this point, $t \cos t=0$, therefore, either $t=0$ or $\cos t=0$ and $t= \pm \frac{\pi}{2}$. When $t=0$, the corresponding point on the curve is $(0,0)$ and when $t= \pm \frac{\pi}{2}$, the corresponding point is $\left(0, \frac{\pi}{2}\right)$.
- We have $\frac{d y}{d t}=\sin t+t \cos t$ and $\frac{d x}{d t}=\cos t-t \sin t$.
- Therefore $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\sin t-t \cos t}{\cos t+t \sin t}$.

Example 2

Consider the curve \mathcal{C} defined by the parametric equations

$$
x=t \cos t \quad y=t \sin t \quad-\pi \leq t \leq \pi
$$

Find the equations of both tangents to \mathcal{C} at ($0, \frac{\pi}{2}$)

- We first find the value(s) of t which correspond to this point. At this point, $t \cos t=0$, therefore, either $t=0$ or $\cos t=0$ and $t= \pm \frac{\pi}{2}$. When $t=0$, the corresponding point on the curve is $(0,0)$ and when $t= \pm \frac{\pi}{2}$, the corresponding point is $\left(0, \frac{\pi}{2}\right)$.
- We have $\frac{d y}{d t}=\sin t+t \cos t$ and $\frac{d x}{d t}=\cos t-t \sin t$.
- Therefore $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\sin t-t \cos t}{\cos t+t \sin t}$.
-When $t=\frac{\pi}{2}, \quad \frac{d y}{d x}=\frac{1-0}{0-\frac{\pi}{2}}=\frac{-2}{\pi}$

Example 2

Consider the curve \mathcal{C} defined by the parametric equations

$$
x=t \cos t \quad y=t \sin t \quad-\pi \leq t \leq \pi
$$

Find the equations of both tangents to \mathcal{C} at ($0, \frac{\pi}{2}$)

- We first find the value(s) of t which correspond to this point. At this point, $t \cos t=0$, therefore, either $t=0$ or $\cos t=0$ and $t= \pm \frac{\pi}{2}$. When $t=0$, the corresponding point on the curve is $(0,0)$ and when $t= \pm \frac{\pi}{2}$, the corresponding point is $\left(0, \frac{\pi}{2}\right)$.
- We have $\frac{d y}{d t}=\sin t+t \cos t$ and $\frac{d x}{d t}=\cos t-t \sin t$.
- Therefore $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\sin t-t \cos t}{\cos t+t \sin t}$.
- When $t=\frac{\pi}{2}, \quad \frac{d y}{d x}=\frac{1-0}{0-\frac{\pi}{2}}=\frac{-2}{\pi}$
- When $t=\frac{-\pi}{2}, \quad \frac{d y}{d x}=\frac{-1-0}{0-\left(-\frac{\pi}{2}\right)(-1)}=\frac{2}{\pi}$

Example 2

Consider the curve \mathcal{C} defined by the parametric equations

$$
x=t \cos t \quad y=t \sin t \quad-\pi \leq t \leq \pi
$$

Find the equations of both tangents to \mathcal{C} at $\left(0, \frac{\pi}{2}\right)$

- We first find the value(s) of t which correspond to this point. At this point, $t \cos t=0$, therefore, either $t=0$ or $\cos t=0$ and $t= \pm \frac{\pi}{2}$. When $t=0$, the corresponding point on the curve is $(0,0)$ and when $t= \pm \frac{\pi}{2}$, the corresponding point is $\left(0, \frac{\pi}{2}\right)$.
- We have $\frac{d y}{d t}=\sin t+t \cos t$ and $\frac{d x}{d t}=\cos t-t \sin t$.
- Therefore $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\sin t-t \cos t}{\cos t+t \sin t}$.
-When $t=\frac{\pi}{2}, \quad \frac{d y}{d x}=\frac{1-0}{0-\frac{\pi}{2}}=\frac{-2}{\pi}$
- When $t=\frac{-\pi}{2}, \quad \frac{d y}{d x}=\frac{-1-0}{0-\left(-\frac{\pi}{2}\right)(-1)}=\frac{2}{\pi}$
- The equations of the tangents are given by $y-\frac{\pi}{2}=\frac{-2}{\pi} x$ and $y-\frac{\pi}{2}=\frac{2}{\pi} x$.

Area under a curve

Recall that the area under the curve $y=F(x)$ where $a \leq x \leq b$ and $F(x)>0$ is given by

$$
\int_{a}^{b} F(x) d x
$$

If this curve (of form $y=F(x), F(x)>0, \quad a \leq x \leq b$) can be traced out once by parametric equations $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$ then we can calculate the area under the curve by computing the integral:

$$
\left|\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t\right|=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t \quad \text { or } \quad \int_{\beta}^{\alpha} g(t) f^{\prime}(t) d t
$$

Area under a curve

Example Find the area under the curve

$$
x=2 \cos t \quad y=3 \sin t \quad 0 \leq t \leq \frac{\pi}{2}
$$

Area under a curve

Example Find the area under the curve

$$
x=2 \cos t \quad y=3 \sin t \quad 0 \leq t \leq \frac{\pi}{2}
$$

- The graph of this curve is a quarter ellipse, starting at $(2,0)$ and moving counterclockwise to the point $(0,3)$.

Area under a curve

Example Find the area under the curve

$$
x=2 \cos t \quad y=3 \sin t \quad 0 \leq t \leq \frac{\pi}{2}
$$

- The graph of this curve is a quarter ellipse, starting at $(2,0)$ and moving counterclockwise to the point $(0,3)$.
- From the formula, we get that the area under the curve is $\left|\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t\right|$.

Area under a curve

Example Find the area under the curve

$$
x=2 \cos t \quad y=3 \sin t \quad 0 \leq t \leq \frac{\pi}{2}
$$

- The graph of this curve is a quarter ellipse, starting at $(2,0)$ and moving counterclockwise to the point $(0,3)$.
- From the formula, we get that the area under the curve is

$$
\left|\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t\right|
$$

- $\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t=\int_{0}^{\pi / 2} 3 \sin t(2(-\sin t)) d t$
$=-6 \int_{0}^{\pi / 2} \sin ^{2} t d t=-6 \frac{1}{2} \int_{0}^{\frac{\pi}{2}}(1-\cos (2 t)) d t$
$=-3\left[t-\frac{\sin (2 t)}{2}\right]_{0}^{\frac{\pi}{2}}=-3\left[\frac{\pi}{2}-\frac{\sin \pi}{2}-0+\frac{\sin 0}{2}\right]=-3\left[\frac{\pi}{2}-0\right]=\frac{-3 \pi}{2}=-\frac{3 \pi}{2}$.

Area under a curve

Example Find the area under the curve

$$
x=2 \cos t \quad y=3 \sin t \quad 0 \leq t \leq \frac{\pi}{2}
$$

- The graph of this curve is a quarter ellipse, starting at $(2,0)$ and moving counterclockwise to the point $(0,3)$.
- From the formula, we get that the area under the curve is

$$
\left|\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t\right| .
$$

- $\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t=\int_{0}^{\pi / 2} 3 \sin t(2(-\sin t)) d t$
$=-6 \int_{0}^{\pi / 2} \sin ^{2} t d t=-6 \frac{1}{2} \int_{0}^{\frac{\pi}{2}}(1-\cos (2 t)) d t$
$=-3\left[t-\frac{\sin (2 t)}{2}\right]_{0}^{\pi}=-3\left[\frac{\pi}{2}-\frac{\sin \pi}{2}-0+\frac{\sin 0}{2}\right]=-3\left[\frac{\pi}{2}-0\right]=\frac{-3 \pi}{2}=-\frac{3 \pi}{2}$.
- Therefore the area under the curve is $\frac{3 \pi}{2}$.

Arc Length: Length of a curve

If a curve \mathcal{C} is given by parametric equations $x=f(t), y=g(t), \alpha \leq t \leq \beta$, where the derivatives of f and g are continuous in the interval $\alpha \leq t \leq \beta$ and \mathcal{C} is traversed exactly once as t increases from α to β, then we can compute the length of the curve with the following integral:

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{\alpha}^{\beta} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

Arc Length: Length of a curve

If a curve \mathcal{C} is given by parametric equations $x=f(t), y=g(t), \alpha \leq t \leq \beta$, where the derivatives of f and g are continuous in the interval $\alpha \leq t \leq \beta$ and \mathcal{C} is traversed exactly once as t increases from α to β, then we can compute the length of the curve with the following integral:

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{\alpha}^{\beta} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

- If the curve is of the form $y=F(x), a \leq x \leq b$, this formula can be derived from our previous formula

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

using the reverse substitution, $x=f(t)$, giving $\frac{d x}{d t}=f^{\prime}(t)$.

Example

Example Find the arc length of the spiral defined by

$$
x=e^{t} \cos t \quad y=e^{t} \sin t \quad 0 \leq t \leq 2 \pi
$$

Example

Example Find the arc length of the spiral defined by

$$
x=e^{t} \cos t \quad y=e^{t} \sin t \quad 0 \leq t \leq 2 \pi
$$

- $x^{\prime}(t)=e^{t} \cos t-e^{t} \sin t, \quad y^{\prime}(t)=e^{t} \sin t+e^{t} \cos t$.

Example

Example Find the arc length of the spiral defined by

$$
x=e^{t} \cos t \quad y=e^{t} \sin t \quad 0 \leq t \leq 2 \pi
$$

- $x^{\prime}(t)=e^{t} \cos t-e^{t} \sin t, \quad y^{\prime}(t)=e^{t} \sin t+e^{t} \cos t$.
- $L=\int_{0}^{2 \pi} \sqrt{e^{2 t}(\cos t-\sin t)^{2}+e^{2 t}(\sin t+\cos t)^{2}} d t$

Example

Example Find the arc length of the spiral defined by

$$
x=e^{t} \cos t \quad y=e^{t} \sin t \quad 0 \leq t \leq 2 \pi
$$

- $x^{\prime}(t)=e^{t} \cos t-e^{t} \sin t, \quad y^{\prime}(t)=e^{t} \sin t+e^{t} \cos t$.
- $L=\int_{0}^{2 \pi} \sqrt{e^{2 t}(\cos t-\sin t)^{2}+e^{2 t}(\sin t+\cos t)^{2}} d t$
$>=\int_{0}^{2 \pi} e^{t} \sqrt{\cos ^{2} t-2 \cos t \sin t+\sin ^{2} t+\sin ^{2} t+2 \sin t \cos t+\cos ^{2} t} d t$

Example

Example Find the arc length of the spiral defined by

$$
x=e^{t} \cos t \quad y=e^{t} \sin t \quad 0 \leq t \leq 2 \pi
$$

- $x^{\prime}(t)=e^{t} \cos t-e^{t} \sin t, \quad y^{\prime}(t)=e^{t} \sin t+e^{t} \cos t$.
- $L=\int_{0}^{2 \pi} \sqrt{e^{2 t}(\cos t-\sin t)^{2}+e^{2 t}(\sin t+\cos t)^{2}} d t$
- $=\int_{0}^{2 \pi} e^{t} \sqrt{\cos ^{2} t-2 \cos t \sin t+\sin ^{2} t+\sin ^{2} t+2 \sin t \cos t+\cos ^{2} t} d t$
$\triangleright=\int_{0}^{2 \pi} e^{t} \sqrt{2} d t=\left.\sqrt{2} e^{t}\right|_{0} ^{2 \pi}=\sqrt{2}\left(e^{2 \pi}-1\right)$.

Example

Example Find the arc length of the circle defined by

$$
x=\cos 2 t \quad y=\sin 2 t \quad 0 \leq t \leq 2 \pi
$$

Do you see any problems?

Example

Example Find the arc length of the circle defined by

$$
x=\cos 2 t \quad y=\sin 2 t \quad 0 \leq t \leq 2 \pi
$$

Do you see any problems?

- If we apply the formula $L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$, then, we get

Example

Example Find the arc length of the circle defined by

$$
x=\cos 2 t \quad y=\sin 2 t \quad 0 \leq t \leq 2 \pi
$$

Do you see any problems?

- If we apply the formula $L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$, then, we get
- $L=\int_{0}^{2 \pi} \sqrt{4 \sin ^{2} 2 t+4 \cos ^{2} 2 t} d t$

Example

Example Find the arc length of the circle defined by

$$
x=\cos 2 t \quad y=\sin 2 t \quad 0 \leq t \leq 2 \pi
$$

Do you see any problems?

- If we apply the formula $L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$, then, we get
- $L=\int_{0}^{2 \pi} \sqrt{4 \sin ^{2} 2 t+4 \cos ^{2} 2 t} d t$
$-=2 \int_{0}^{2 \pi} \sqrt{1} d t=4 \pi$

Example

Example Find the arc length of the circle defined by

$$
x=\cos 2 t \quad y=\sin 2 t \quad 0 \leq t \leq 2 \pi
$$

Do you see any problems?

- If we apply the formula $L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$, then, we get
- $L=\int_{0}^{2 \pi} \sqrt{4 \sin ^{2} 2 t+4 \cos ^{2} 2 t} d t$
- $=2 \int_{0}^{2 \pi} \sqrt{1} d t=4 \pi$
- The problem is that this parametric curve traces out the circle twice, so we get twice the circumference of the circle as our answer.

